## **Space Technology Saves Lives**

By Canada's History

**Grade Level:** 6, 7/8, 9/10, 11/12

Magazine Issue: "Space" (November 2025), Kayak: Canada's History Magazine for

Kids

Time Required: 1 lesson

#### **Select Curriculum Connections:**

**BRITISH COLUMBIA** | Science 10: Applications of scientific understanding in technology and society.

ALBERTA | Science 9: Space exploration and its influence on quality of life.

ONTARIO | History 10: Canada's contributions to science and global issues.

**NOVA SCOTIA** | Science 9: Technology's impact on society and human health.

## **Learning Outcomes:**

#### Students will:

- Recognize Canadian contributions to space science and technology.
- Identify how innovations developed for space are adapted for life on Earth.
- Evaluate the importance of investment in space exploration for Canadian society.

## **Teacher Background:**

Space exploration is not only about astronauts – it also generates technologies that improve life on Earth. Canadian contributions to space research have had a direct impact on healthcare, communication, and technology. Some examples include:

- Bio-Monitor: Medical shirts tested in space, now used for patient monitoring.
- Canadarm2 » neuroArm: The robotic arm developed for space missions inspired surgical robots for delicate operations.
- Satellites: First used for communication in space, now critical for telemedicine in northern communities.





### **Activity:**

#### PART I – Introduction: Connecting Space to Health

- Ask your students to consider the following question, "What do space inventions have to do with hospitals or doctors' offices?"
- Collect their ideas and write them on the board.

#### PART II - Read: Canadian Space Innovations

- Have your students read the article "Health on Earth" on pages 18-21. The final page explores some of the technologies that were invented for space use, but now are used in the health field on Earth, such as:
  - Bio-Monitor w wearable health-monitoring shirts
  - Canadarm2 » neuroArm surgical robot
  - Satellites » telemedicine for rural communities
- For more information on how these technologies are used in space, students can read the article "Canada Among the Stars" on pages 4-7 or conduct independent research.

### PART III – Activity: Space-to-Earth Match-Up

- Handout the worksheet **Space-to-Earth Match-Up**. There are two columns: Space Innovation and Earth Application.
- Individually or in small groups, have students match the columns. Note that there are examples beyond what was presented in *Kayak* that students will need to assess.
- Encourage students to justify why each space technology is important on Earth.
- Use the answer key if there are any questions.

# PART IV – Wrap-Up: Reflection and Discussion

 Ask your students to reflect on the following question and share their thoughts as a class: "Do you think it is important for Canada to invest in Space?"





#### **Extension:**

An extension for older students:

 Research another Canadian space technology that is now used on Earth. For example, GPS, water recycling systems, bone-loss studies, etc.

Some additional questions you could ask students to consider are:

- What does Canada's role in developing space technology say about our strengths as a country?
- How is the Canadarm similar to other Canadian inventions in history (e.g., insulin, snowmobile, radio communication) that changed lives around the world?
- Why do you think telemedicine is especially important in northern and Indigenous communities? What does this tell us about the role of technology in addressing inequalities in Canada?
- How do Canada's space contributions affect how the world sees us as a country?
- What kind of technology do you think space research might give us in the future and what problems on Earth could it help solve?





# **Space-to-Earth Match-Up**

Match the correct space innovation to its application on Earth. Consider why each space technology is important on Earth.

| Space Innovation           | Earth Application                                    |
|----------------------------|------------------------------------------------------|
| Canadarm2                  | Standard tools for construction and home use         |
| Bio-Monitor                | Durable eyeglasses and protective eyewear            |
| Satellites                 | Advanced prosthetics with robotics                   |
| Water purification systems | Protective clothing and firefighting gear            |
| Infrared ear thermometers  | Navigation, mapping, and disaster response           |
| Artificial limbs           | Clean water systems for remote areas and emergencies |
| Scratch-resistance lenses  | Storm monitoring and climate research                |
| Cordless power tools       | Non-contact medical thermometers                     |
| Freeze-dried food          | neuroArm surgery                                     |
| GPS satellites             | Wearable health shirts for patient monitoring        |
| Fire-resistant materials   | Telemedicine in remote/northern communities          |
| Weather satellites         | Camping, military, and emergency food supplies       |





# **Answer Key: Space-to-Earth Match-Up**

| Space Innovation           | Earth Application                                    |
|----------------------------|------------------------------------------------------|
| Canadarm2                  | neuroArm surgery                                     |
| Bio-Monitor                | Wearable health shirts for patient monitoring        |
| Satellites                 | Telemedicine in remote/northern communities          |
| Water purification systems | Clean water systems for remote areas and emergencies |
| Infrared ear thermometers  | Non-contact medical thermometers                     |
| Artificial limbs           | Advanced prosthetics with robotics                   |
| Scratch-resistance lenses  | Durable eyeglasses and protective eyewear            |
| Cordless power tools       | Standard tools for construction and home use         |
| Freeze-dried food          | Camping, military, and emergency food supplies       |
| GPS satellites             | Navigation, mapping, and disaster response           |
| Fire-resistant materials   | Protective clothing and firefighting gear            |
| Weather satellites         | Storm monitoring and climate research                |



